
1.1 Introduction
In Class XI, we have understood database
concepts and learned how to create databases
using MySQL. We have also learnt how to
populate, manipulate and retrieve data from
a database using SQL queries.

In this chapter, we are going to learn
more SQL commands which are required
to perform various queries in a database.
We will understand how to use single row
functions, multiple row functions, arranging
records in ascending or descending order,
grouping records based on some criteria,
and working on multiple tables using SQL.

Let us create a database called
CARSHOWROOM, having the schema as

“Any unique image that you desire
probably already exists on the
internet or in some database... The
problem today is no longer how to
create the right image, but how to
find an already existing one”

— Lev Manovich

C h a p t e r

 1
Querying and SQL
Functions

In this chapter

 » Introduction
 » Functions in SQL
 » Group By in SQL
 » Operations on

Relations
 » Using Two Relations

in a Query

Chapter 1.indd 1 11/26/2020 12:31:29 PM

Reprint 2025-26

InformatIcs PractIces2

shown in Figure 1.1. It has the following four relations:
• INVENTORY: Stores name, price, model, year

of manufacturing, and fuel type for each car in
inventory of the showroom,

• CUSTOMER: Stores customer Id, name, address,
phone number and email for each customer,

• SALE: Stores the invoice number, car Id, customer
id, sale date, mode of payment, sales person’s
employee Id, and selling price of the car sold,

• EMPLOYEE: Stores employee Id, name, date of
birth, date of joining, designation, and salary of
each employee in the showroom.

Car ID
CarName
Price
Model
YearManufacture
FuelType

Inventory

InvoiceNo
CarID
CustID
SaleDate
PaymentMode
EmpID
SalePrice

Sale

EmpID
EmpName
DOB
DOJ
Designation
Salary

Employee

CustID
CustName
CustAdd
Phone
Email

Customer

Figure 1.1: Schema diagram of database CARSHOWROOM

The records of the four relations are shown in Tables
1.1, 1.2, 1.3, and 1.4 respectively.

Table 1.1 INVENTORY
mysql> SELECT * FROM INVENTORY;

+-------+--------+-----------+-----------+-----------------+----------+

| CarId | CarName| Price | Model | YearManufacture | Fueltype |

+-------+--------+-----------+-----------+-----------------+----------+

| D001 | Car1 | 582613.00 | LXI | 2017 | Petrol |

| D002 | Car1 | 673112.00 | VXI | 2018 | Petrol |

| B001 | Car2 | 567031.00 | Sigma1.2 | 2019 | Petrol |

| B002 | Car2 | 647858.00 | Delta1.2 | 2018 | Petrol |

Chapter 1.indd 2 11/26/2020 12:31:29 PM

Reprint 2025-26

Querying and SQL FunctionS 3

E001	Car3	355205.00	5 STR STD	2017	CNG
E002	Car3	654914.00	CARE	2018	CNG
S001	Car4	514000.00	LXI	2017	Petrol
S002	Car4	614000.00	VXI	2018	Petrol
+-------+--------+-----------+-----------+-----------------+----------+
8 rows in set (0.00 sec)

Table 1.2 CUSTOMER
mysql> SELECT * FROM CUSTOMER;

+-------+------------+-----------------------+------------+-------------------+

|CustId | CustName | CustAdd | Phone | Email |

+-------+------------+-----------------------+------------+-------------------+

| C0001 |AmitSaha | L-10, Pitampura | 4564587852 |amitsaha2@gmail.com|

| C0002 |Rehnuma | J-12, SAKET | 5527688761 |rehnuma@hotmail.com|

| C0003 |CharviNayyar| 10/9, FF, Rohini | 6811635425 |charvi123@yahoo.com|

| C0004 |Gurpreet | A-10/2, SF, MayurVihar| 3511056125 |gur_singh@yahoo.com|

+-------+------------+-----------------------+------------+-------------------+

4 rows in set (0.00 sec)

Table 1.3 SALE
mysql> SELECT * FROM SALE;

+-----------+-------+--------+------------+--------------+-------+-----------+

| InvoiceNo | CarId | CustId | SaleDate | PaymentMode |EmpID | SalePrice |

+-----------+-------+--------+------------+--------------+-------+-----------+

| I00001 | D001 | C0001 | 2019-01-24 | Credit Card | E004 | 613247.00 |

| I00002 | S001 | C0002 | 2018-12-12 | Online | E001 | 590321.00 |

| I00003 | S002 | C0004 | 2019-01-25 | Cheque | E010 | 604000.00 |

| I00004 | D002 | C0001 | 2018-10-15 | Bank Finance | E007 | 659982.00 |

| I00005 | E001 | C0003 | 2018-12-20 | Credit Card | E002 | 369310.00 |

| I00006 | S002 | C0002 | 2019-01-30 | Bank Finance | E007 | 620214.00 |

+-----------+-------+--------+------------+--------------+-------+-----------+

6 rows in set (0.00 sec)

Table 1.4 EMPLOYEE
mysql> SELECT * FROM EMPLOYEE;

+-------+----------+------------+------------+--------------+--------+

| EmpID | EmpName | DOB | DOJ | Designation | Salary |

+-------+----------+------------+------------+--------------+--------+

| E001 |Rushil | 1994-07-10 | 2017-12-12 | Salesman | 25550 |

| E002 |Sanjay | 1990-03-12 | 2016-06-05 | Salesman | 33100 |

| E003 |Zohar | 1975-08-30 | 1999-01-08 | Peon | 20000 |

| E004 |Arpit | 1989-06-06 | 2010-12-02 | Salesman | 39100 |

| E006 |Sanjucta | 1985-11-03 | 2012-07-01 | Receptionist | 27350 |

| E007 |Mayank | 1993-04-03 | 2017-01-01 | Salesman | 27352 |

| E010 |Rajkumar | 1987-02-26 | 2013-10-23 | Salesman | 31111 |

+-------+----------+------------+------------+--------------+--------+

7 rows in set (0.00 sec)

Chapter 1.indd 3 11/26/2020 12:31:29 PM

Reprint 2025-26

InformatIcs PractIces4

1.2 Functions in sQL
We know that a function is used to perform some
particular task and it returns zero or more values as a
result. Functions are useful while writing SQL queries
also. Functions can be applied to work on single or
multiple records (rows) of a table. Depending on their
application in one or multiple rows, SQL functions
are categorised as Single row functions and Aggregate
functions.

1.2.1 Single Row Functions
These are also known as Scalar functions. Single row
functions are applied on a single value and return
a single value. Figure 1.2 lists different single row
functions under three categories — Numeric (Math),
String, Date and Time.
Math functions accept numeric value as input, and
return a numeric value as a result. String functions
accept character value as input, and return either
character or numeric values as output. Date and
time functions accept date and time values as input,
and return numeric or string, or date and time values
as output.

POWER()
ROUND()
MOD()

Numeric Function

UCASE()
LCASE()
MID()
LENGTH()
LEFT()
RIGHT()
INSTR()
LTRIM()
RTRIM()
TRIM()

String Function

NOW()
DATE()
MONTH()
MONTHNAME()
YEAR()
DAY()
DAYNAME()

Date Function

Single Row Function

Figure 1.2: Three categories of single row functions in SQL

Chapter 1.indd 4 11/26/2020 12:31:30 PM

Reprint 2025-26

Querying and SQL FunctionS 5

Table 1.5 Math Functions
Function Description Example with output

POWER(X,Y)
can also be written as
POW(X,Y)

Calculates X to the power Y. mysql> SELECT POWER(2,3);

Output:

8

ROUND(N,D) Rounds off number N to D
number of decimal places.
Note: If D=0, then it rounds
off the number to the nearest
integer.

mysql>SELECT ROUND(2912.564, 1);

Output:

2912.6

mysql> SELECT ROUND(283.2);

Output:

283

MOD(A, B) Returns the remainder
after dividing number A by
number B.

mysql> SELECT MOD(21, 2);

Output:

1

Example 1.1
In order to increase sales, suppose the car dealer decides
to offer his customers to pay the total amount in 10
easy EMIs (equal monthly installments). Assume that
EMIs are required to be in multiples of 10,000. For that,
the dealer wants to list the CarID and Price along with
the following data from the Inventory table:
a) Calculate GST as 12% of Price and display the result

after rounding it off to one decimal place.

mysql> SELECT ROUND(12/100*Price,1) "GST"
FROM INVENTORY;
+---------+
| GST |
+---------+
| 69913.6 |
| 80773.4 |
| 68043.7 |
| 77743.0 |
| 42624.6 |
| 78589.7 |
| 61680.0 |
| 73680.0 |
+---------+
 8 rows in set (0.00 sec)

b) Add a new column FinalPrice to the table inventory,
which will have the value as sum of Price and 12%
of the GST.

(A) Numeric Functions
Three commonly used numeric functions are POWER(),
ROUND() and MOD(). Their usage along with syntax is
given in Table 1.5.

Chapter 1.indd 5 11/26/2020 12:31:30 PM

Reprint 2025-26

INFORMATICS PRACTICES6

mysql> ALTER TABLE INVENTORY ADD FinalPrice
Numeric(10,1);
Query OK, 8 rows affected (0.03 sec)
Records: 8 Duplicates: 0 Warnings: 0

mysql> UPDATE INVENTORY SET
FinalPrice=Price+Round(Price*12/100,1);
Query OK, 8 rows affected (0.01 sec)
Rows matched: 8 Changed: 8 Warnings: 0

c) Calculate and display the amount to be paid
each month (in multiples of 1000) which is to be
calculated after dividing the FinalPrice of the car
into 10 instalments.

d) After dividing the amount into EMIs, find out the
remaining amount to be paid immediately, by
performing modular division.
Following SQL query can be used to solve the above
mentioned problems:

mysql> SELECT * FROM INVENTORY;

+-------+--------+-----------+----------+---------------+----------+-------------+
| CarId |CarName | Price | Model |YearManufacture| FuelType | FinalPric |
+-------+--------+-----------+----------+---------------+----------+-------------+

| D001 |Car1 | 582613.00 | LXI | 2017 | Petrol | 652526.6 |

| D002 |Car1 | 673112.00 | VXI | 2018 | Petrol | 753885.4 |

| B001 |Car2 | 567031.00 | Sigma1.2 | 2019 | Petrol | 635074.7 |

| B002 |Car2 | 647858.00 | Delta1.2 | 2018 | Petrol | 725601.0 |

| E001 |Car3 | 355205.00 | 5STR STD | 2017 | CNG | 397829.6 |

| E002 |Car3 | 654914.00 | CARE | 2018 | CNG | 733503.7 |

| S001 |Car4 | 514000.00 | LXI | 2017 | Petrol | 575680.0 |

| S002 |Car4 | 614000.00 | VXI | 2018 | Petrol | 687680.0 |

+-------+--------+-----------+----------+---------------+----------+-------------+

8 rows in set (0.00 sec)

mysql> select CarId, FinalPrice, ROUND((FinalPrice-
MOD(FinalPrice,10000))/10,0) "EMI", MOD(FinalPrice,10000) "Remaining Amount"
FROM INVENTORY;

+-------+------------+-------+------------------+

| CarId | FinalPrice | EMI | Remaining Amount |

+-------+------------+-------+------------------+

| D001 | 652526.6 | 65000 | 2526.6 |

| D002 | 753885.4 | 75000 | 3885.4 |

| B001 | 635074.7 | 63000 | 5074.7 |

| B002 | 725601.0 | 72000 | 5601.0 |

| E001 | 397829.6 | 39000 | 7829.6 |

| E002 | 733503.7 | 73000 | 3503.7 |

| S001 | 575680.0 | 57000 | 5680.0 |

| S002 | 687680.0 | 68000 | 7680.0 |

+-------+------------+-------+------------------+

8 rows in set (0.00 sec)

Chapter 1.indd 6Chapter 1.indd 6 19-Sep-2023 10:15:54 AM19-Sep-2023 10:15:54 AM

Reprint 2025-26

Querying and SQL FunctionS 7

Example 1.2
a) Let us now add a new column Commission to the

SALE table. The column Commission should have
a total length of 7 in which 2 decimal places to
be there.
mysql> ALTER TABLE SALE ADD(Commission
Numeric(7,2));
Query OK, 6 rows affected (0.34 sec)
Records: 6 Duplicates: 0 Warnings: 0

b) Let us now calculate commission for sales agents
as 12 per cent of the SalePrice, insert the values
to the newly added column Commission and then
display records of the table SALE where commission
> 73000.
mysql> UPDATE SALE SET
Commission=12/100*SalePrice;
Query OK, 6 rows affected (0.06 sec)
Rows matched: 6 Changed: 6 Warnings: 0

mysql> SELECT * FROM SALE WHERE Commission > 73000;

+---------------+------+----------+------------+------+-----------+-----------+
|invoiceno|carid|custid| saledate |paymentmode |empid | saleprice |Commission |
+---------------+------+----------+------------+------+-----------+-----------+

|I00001 |D001 |C0001 |2019-01-24|Credit Card |E004 | 613247.00 | 73589.64 |

|I0000 |D002 |C0001 |2018-10-15|Bank Finance|E007 | 659982.00 | 79197.84 |

|I00006 |S002 |C0002 |2019-01-30|Bank Finance|E007 | 620214.00 | 74425.68 |

+---------------+------+-----------+------------+------+----------+-----------+

3 rows in set (0.02 sec)

c) Display InvoiceNo, SalePrice and Commission such
that commission value is rounded off to 0.
mysql> SELECT InvoiceNo, SalePrice,
Round(Commission,0) FROM SALE;
+-----------+-----------+---------------------+
| InvoiceNo | SalePrice | Round(Commission,0) |
+-----------+-----------+---------------------+
I00001	613247.00	73590
I00002	590321.00	70839
I00003	604000.00	72480
I00004	659982.00	79198
I00005	369310.00	44317
I00006	620214.00	74426
+-----------+-----------+---------------------+

6 rows in set (0.00 sec)

(B) String Functions
String functions can perform various operations on
alphanumeric data which are stored in a table. They
can be used to change the case (uppercase to lowercase

Activity 1.1

Using the table SALE
of CARSHOWROOM
database, write
SQL queries for the
following:

a) Display the InvoiceNo
and commission
value rounded off to
zero decimal places.

b) Display the details of
SALE where payment
mode is credit card..

Chapter 1.indd 7 11/26/2020 12:31:30 PM

Reprint 2025-26

InformatIcs PractIces8

or vice-versa), extract a substring, calculate the length
of a string and so on. String functions and their usage
are shown in Table 1.6.

Table 1.6 String Functions
Function Description Example with output

UCASE(string)
OR
UPPER(string)

Converts string into uppercase. mysql> SELECT
UCASE(“Informatics
Practices”);

Output:

INFORMATICS PRACTICES

LOWER(string)
OR
LCASE(string)

Converts string into lowercase. mysql> SELECT
LOWER(“Informatics
Practices”);

Output:

informatics practices

MID(string, pos, n)
OR
SUBSTRING(string,
pos, n)
OR
SUBSTR(string, pos, n)

Returns a substring of size n
starting from the specified position
(pos) of the string. If n is not
specified, it returns the substring
from the position pos till end of the
string.

mysql> SELECT
MID(“Informatics”, 3, 4);

Output:

form

mysql> SELECT
MID(‘Informatics’,7);

Output:

atics

LENGTH(string) Return the number of characters
in the specified string.

mysql> SELECT
LENGTH(“Informatics”);

Output:

11

LEFT(string, N) Returns N number of characters
from the left side of the string.

mysql> SELECT
LEFT(“Computer”, 4);

Output:

Comp

RIGHT(string, N) Returns N number of characters
from the right side of the string.

mysql> SELECT
RIGHT(“SCIENCE”, 3);

Output:

NCE

INSTR(string,
substring)

Returns the position of the first
occurrence of the substring in
the given string. Returns 0, if the
substring is not present in the
string.

mysql> SELECT
INSTR(“Informatics”, “ma”);

Output:

6

LTRIM(string) Returns the given string after
removing leading white space
characters.

mysql> SELECT LENGTH(“
DELHI”), LENGTH(LTRIM(“
DELHI”));

Output:
+--------+--------+
| 7 | 5 |
+--------+--------+
1 row in set (0.00 sec)

Chapter 1.indd 8 11/26/2020 12:31:30 PM

Reprint 2025-26

Querying and SQL FunctionS 9

RTRIM(string) Returns the given string after
removing trailing white space
characters.

mysql>SELECT LENGTH(“PEN “)
LENGTH(RTRIM(“PEN “));

Output:
+--------+--------+
| 5 | 3 |
+--------+--------+
1 row in set (0.00 sec)

TRIM(string) Returns the given string after
removing both leading and trailing
white space characters.

mysql> SELECT LENGTH(“ MADAM
“),LENGTH(TRIM(“ MADAM “));

Output:
+--------+--------+
| 9 | 5 |
+--------+--------+
1 row in set (0.00 sec)

Example 1.3
Let us use CUSTOMER relation shown in Table 1.2 to
understand the working of string functions.
a) Display customer name in lower case and customer

email in upper case from table CUSTOMER.
mysql> SELECT LOWER(CustName), UPPER(Email) FROM
CUSTOMER;
+-----------------+---------------------+
| LOWER(CustName) | UPPER(Email) |
+-----------------+---------------------+
amitsaha	AMITSAHA2@GMAIL.COM
rehnuma	REHNUMA@HOTMAIL.COM
charvinayyar	CHARVI123@YAHOO.COM
gurpreet	GUR_SINGH@YAHOO.COM
+-----------------+---------------------+
4 rows in set (0.00 sec)

b) Display the length of the email and part of the email
from the email ID before the character ‘@’. Note - Do
not print ‘@’.

mysql> SELECT LENGTH(Email), LEFT(Email, INSTR(Email,
"@")-1) FROM CUSTOMER;

+---------------+----------------------------------+
| LENGTH(Email) | LEFT(Email, INSTR(Email, "@")-1) |
+---------------+----------------------------------+

| 19 | amitsaha2 |

| 19 | rehnuma |

| 19 | charvi123 |

| 19 | gur_singh |

+---------------+----------------------------------+

4 rows in set (0.03 sec)

 The function INSTR will return the position of “@”
in the email address. So to print email id without
“@” we have to use position -1.

Activity 1.2

Using the table
INVENTORY from
CARSHOWROOM
database, write
sql queries for the
following:

a) Convert the CarMake
to uppercase if its
value starts with the
letter ‘B’.

b) If the length of
the car’s model is
greater than 4 then
fetch the substring
starting from position
3 till the end from
attribute Model.

Chapter 1.indd 9 11/26/2020 12:31:30 PM

Reprint 2025-26

INFORMATICS PRACTICES10

c) Let us assume that four digit area code is reflected
in the mobile number starting from position number
3. For example, 2630 is the area code of mobile
number 4726309212. Now, write the SQL query to
display the area code of the customer living in Rohini.
mysql> SELECT MID(Phone,3,4) FROM CUSTOMER WHERE
CustAdd like ‘%Rohini%’;
+----------------+
| MID(Phone,3,4) |
+----------------+
| 1163 |
+----------------+
1 row in set (0.00 sec)

d) Display emails after removing the domain name
extension “.com” from emails of the customers.
mysql> SELECT TRIM(“.com” from Email) FROM
CUSTOMER;
+-------------------------+
| TRIM(".com" FROM Email) |
+-------------------------+
| amitsaha2@gmail |
| rehnuma@hotmail |
| charvi123@yahoo |
| gur_singh@yahoo |
+-------------------------+
4 rows in set (0.00 sec)

e) Display details of all the customers having yahoo
emails only.

mysql> SELECT * FROM CUSTOMER WHERE Email LIKE

"%yahoo%";

+-------+-------------+----------------------+-----------+--------------------+
|CustID | CustName | CustAdd | Phone | Email |
+-------+-------------+----------------------+-----------+--------------------+

|C0003 |CharviNayyar |10/9, FF, Rohini |6811635425 |charvi123@yahoo.com |

|C0004 |Gurpreet | A-10/2,SF, MayurVihar|3511056125 | gur_singh@yahoo.com|

+-------+-------------+----------------------+-----------+--------------------+

2 rows in set (0.00 sec)t

(C) Date and Time Functions
There are various functions that are used to perform
operations on date and time data. Some of the operations
include displaying the current date, extracting each
element of a date (day, month and year), displaying day
of the week and so on. Table 1.7 explains various date
and time functions.

Activity 1.3

Using the table
EMPLOYEE from
CARSHOWROOM
database, write
SQL queries for the
following:

a) Display employee
name and the last
2 characters of his
EmpId.

b) Display designation
of employee and the
position of character
‘e’ in designation, if
present.

Chapter 1.indd 10Chapter 1.indd 10 12-Apr-2023 3:04:49 PM12-Apr-2023 3:04:49 PM

Reprint 2025-26

Querying and SQL FunctionS 11

Table 1.7 Date Functions
Function Description Example with output

NOW() It returns the current
system date and time.

mysql> SELECT NOW();
Output:
2019-07-11 19:41:17

DATE() It returns the date part
from the given date/
time expression.

mysql> SELECT DATE(NOW());
Output:
2019-07-11

MONTH(date) It returns the month in
numeric form from the
date.

mysql> SELECT MONTH(NOW());
Output:
7

MONTHNAME(date) It returns the month
name from the specified
date.

mysql> SELECT
MONTHNAME(“2003-11-28”);
Output:
November

YEAR(date) It returns the year from
the date.

mysql> SELECT YEAR(“2003-10-03”);
Output:
2003

DAY(date) It returns the day part
from the date.

mysql> SELECT DAY(“2003-03-24”);
Output:
24

DAYNAME(date) It returns the name of
the day from the date.

mysql> SELECT
DAYNAME(“2019-07-11”);
Output:
Thursday

Example 1.4
Let us use the EMPLOYEE table of CARSHOWROOM
database to illustrate the working of some of the date
and time functions.
a) Select the day, month number and year of joining of

all employees.
mysql> SELECT DAY(DOJ), MONTH(DOJ), YEAR(DOJ) FROM
EMPLOYEE;
+----------+------------+-----------+
| DAY(DOJ) | MONTH(DOJ) | YEAR(DOJ) |
+----------+------------+-----------+
12	12	2017
5	6	2016
8	1	1999
2	12	2010
1	7	2012
1	1	2017
23	10	2013
+----------+------------+-----------+
7 rows in set (0.03 sec)

b) If the date of joining is not a Sunday, then display it
in the following format "Wednesday, 26, November,
1979."

Activity 1.4

Using the table
EMPLOYEE of
CARSHOWROOM
database, list the
day of birth for all
employees whose
salary is more than
25000.

Chapter 1.indd 11 11/26/2020 12:31:30 PM

Reprint 2025-26

InformatIcs PractIces12

Table 1.8 Differences between Single row and Multiple row Functions
Single_row Functions Multiple_row functions

1. It operates on a single row at a time. 1. It operates on groups of rows.

2. It returns one result per row. 2. It returns one result for a group of rows.

3. It can be used in Select, Where, and Order
by clause.

3. It can be used in the select clause only.

4. Math, String and Date functions are
examples of single row functions.

4. Max(), Min(), Avg(), Sum(), Count() and Count(*)
are examples of multiple row functions.

Table 1.9 Aggregate Functions in SQL
Function Description Example with output

MAX(column) Returns the largest value from
the specified column.

mysql> SELECT MAX(Price) FROM
INVENTORY;
Output:
673112.00

MIN(column) Returns the smallest value from
the specified column.

mysql> SELECT MIN(Price) FROM
INVENTORY;
Output:
355205.00

AVG(column) Returns the average of the values
in the specified column.

mysql> SELECT AVG(Price) FROM
INVENTORY;
Output:
576091.625000

mysql> SELECT DAYNAME(DOJ), DAY(DOJ),
MONTHNAME(DOJ), YEAR(DOJ) FROM EMPLOYEE WHERE
DAYNAME(DOJ)!='Sunday';
+------------+---------+---------------+---------+
|DAYNAME(DOJ)| DAY(DOJ)|MONTHNAME(DOJ) |YEAR(DOJ)|
+------------+---------+---------------+---------+
Tuesday	12	December	2017
Friday	8	January	1999
Thursday	2	December	2010
Wednesday	23	October 2013	
+------------+---------+---------------+---------+
4 rows in set (0.00 sec)

1.2.2 Aggregate Functions
Aggregate functions are also called multiple row functions.
These functions work on a set of records as a whole,
and return a single value for each column of the records
on which the function is applied. Table 1.8 shows the
differences between single row functions and multiple
row functions. Table 1.9 describes some of the aggregate
functions along with their usage. Note that column
must be of numeric type.

Can we use arithmetic
operators (+, -. *, or /)
on date functions?

Think and Reflect

Chapter 1.indd 12 11/26/2020 12:31:30 PM

Reprint 2025-26

Querying and SQL FunctionS 13

SUM(column) Returns the sum of the values
for the specified column.

mysql> SELECT SUM(Price) FROM
INVENTORY;
Output:
4608733.00

COUNT(column) Returns the number of values
in the specified column ignoring
the NULL values.

Note:
In this example, let us consider
a MANAGER table having two
attributes and four records.

mysql> SELECT * from MANAGER;
Output:
+------+---------+
| MNO | MEMNAME |
+------+---------+
1	AMIT
2	KAVREET
3	KAVITA
4	NULL
+------+---------+
4 rows in set (0.00 sec)

mysql> SELECT COUNT(MEMNAME)
FROM MANAGER;

Output:
+----------------+
| COUNT(MEMNAME) |
+----------------+
| 3 |
+----------------+
1 row in set (0.01 sec)

COUNT(*) Returns the number of records
in a table.

Note: In order to display the
number of records that matches
a particular criteria in the table,
we have to use COUNT(*) with
WHERE clause.

mysql> SELECT COUNT(*) from
MANAGER;

Output:
+----------+
| count(*) |
+----------+
| 4 |
+----------+
1 row in set (0.00 sec)

Example 1.5
a) Display the total number of records from table

INVENTORY having a model as VXI.
mysql> SELECT COUNT(*) FROM INVENTORY WHERE
Model=”VXI”;
+----------+
| COUNT(*) |
+----------+
| 2 |
+----------+
1 row in set (0.00 sec)

b) Display the total number of different types of Models
available from table INVENTORY.

Chapter 1.indd 13 11/26/2020 12:31:30 PM

Reprint 2025-26

InformatIcs PractIces14

mysql> SELECT COUNT(DISTINCT Model) FROM
INVENTORY;
+-----------------------+
| COUNT(DISTINCT MODEL) |
+-----------------------+
| 6 |
+-----------------------+
1 row in set (0.09 sec)

c) Display the average price of all the cars with Model
LXI from table INVENTORY.
mysql> SELECT AVG(Price) FROM INVENTORY WHERE
Model="LXI";
+---------------+
| AVG(Price) |
+---------------+
| 548306.500000 |
+---------------+
1 row in set (0.03 sec)

1.3 GRouP BY in sQL
At times we need to fetch a group of rows on the
basis of common values in a column. This can be
done using a GROUP BY clause. It groups the rows
together that contain the same values in a specified
column. We can use the aggregate functions (COUNT,
MAX, MIN, AVG and SUM) to work on the grouped
values. HAVING Clause in SQL is used to specify
conditions on the rows with GROUP BY clause.

Consider the SALE table from the CARSHOWROOM
database:
mysql> SELECT * FROM SALE;

+-----------+------+-------+------------+------------------+----

Activity 1.5

a) Find sum of Sale
Price of the cars
purchased by the
customer having ID
C0001 from table
SALE.

b) Find the maximum
and minimum
commission from the
SALE table.

--+------------+------------+
|InvoiceNo|CarId|CustId| SaleDate | PaymentMode |EmpID| SalePrice|Commission|

+-----------+------+-------+------------+------------------+------+------------+------------+
|I00001 |D001 |C0001 |2019-01-24| Credit Card | E004| 613247.00| 73589.64 |

|I00002 |S001 |C0002 |2018-12-12| Online | E001| 590321.00| 70838.52 |

|I00003 |S002 |C0004 |2019-01-25| Cheque | E010| 604000.00| 72480.00 |

|I00004 |D002 |C0001 |2018-10-15| Bank Finance | E007| 659982.00| 79197.84 |

|I00005 |E001 |C0003 |2018-12-20| Credit Card | E002| 369310.00| 44317.20 |

|I00006 |S002 |C0002 |2019-01-30| Bank Finance | E007| 620214.00| 74425.68 |

+-----------+------+-------+------------+------------------+------+------------+------------+
6 rows in set (0.11 sec)

CarID, CustID, SaleDate, PaymentMode, EmpID,
SalePrice are the columns that can have rows with the
same values in it. So, GROUP BY clause can be used

Chapter 1.indd 14 11/26/2020 12:31:30 PM

Reprint 2025-26

Querying and SQL FunctionS 15

in these columns to find the number of records of a
particular type (column), or to calculate the sum of the
price of each car type.
Example 1.6
a) Display the number of cars purchased by each

customer from the SALE table.
mysql> SELECT CustID, COUNT(*) "Number of Cars"
FROM SALE GROUP BY CustID;
+--------+----------------+
| CustID | Number of Cars |
+--------+----------------+
C0001	2
C0002	2
C0003	1
C0004	1
+--------+----------------+
4 rows in set (0.00 sec)

b) Display the customer Id and number of cars
purchased if the customer purchased more than 1
car from SALE table.
mysql> SELECT CustID, COUNT(*) FROM SALE GROUP BY
CustID HAVING Count(*)>1;
+--------+----------+
| CustID | COUNT(*) |
+--------+----------+
| C0001 | 2 |
| C0002 | 2 |
+--------+----------+
2 rows in set (0.30 sec)

c) Display the number of people in each category of
payment mode from the table SALE.
mysql> SELECT PaymentMode, COUNT(PaymentMode) FROM
SALE GROUP BY Paymentmode ORDER BY Paymentmode;
+--------------+--------------------+
| PaymentMode | Count(PaymentMode) |
+--------------+--------------------+
Bank Finance	2
Cheque	1
Credit Card	2
Online	1
+--------------+--------------------+
4 rows in set (0.00 sec)

d) Display the PaymentMode and number of payments
made using that mode more than once.
mysql> SELECT PaymentMode, Count(PaymentMode) FROM
SALE GROUP BY Paymentmode HAVING COUNT(*)>1 ORDER

Activity 1.6

a) List the total number
of cars sold by each
employee.

b) List the maximum
sale made by each
employee.

Chapter 1.indd 15 11/26/2020 12:31:30 PM

Reprint 2025-26

InformatIcs PractIces16

BY Paymentmode;
+--------------+--------------------+
| PaymentMode | Count(PaymentMode) |
+--------------+--------------------+
| Bank Finance | 2 |
| Credit Card | 2 |
+--------------+--------------------+
2 rows in set (0.00 sec)

1.4 oPeRations on ReLations
We can perform certain operations on relations like
Union, Intersection, and Set Difference to merge the
tuples of two tables. These three operations are binary
operations as they work upon two tables. Note here, that
these operations can only be applied if both the relations
have the same number of attributes, and corresponding
attributes in both tables have the same domain.

1.4.1 UNION (U)
This operation is used to combine the selected rows of
two tables at a time. If some rows are the same in both
the tables, then the result of the Union operation will
show those rows only once. Figure 1.3 shows union of
two sets.

Music Dance

Figure 1.3: Union of two sets

Let us consider two relations DANCE and MUSIC
shown in Tables 1.10 and 1.11 respectively.
Table 1.10 DANCE
+------+--------+-------+
| SNo | Name | Class |
+------+--------+-------+
1	Aastha	7A
2	Mahira	6A
3	Mohit	7B
4	Sanjay	7A
+------+--------+-------+

notes

Chapter 1.indd 16 11/26/2020 12:31:30 PM

Reprint 2025-26

Querying and SQL FunctionS 17

Table 1.11 MUSIC
+------+---------+-------+
| SNo | Name | Class |
+------+---------+-------+
1	Mehak	8A
2	Mahira	6A
3	Lavanya	7A
4	Sanjay	7A
5	Abhay	8A
+------+---------+-------+

If we need the list of students participating in either
of events, then we have to apply UNION operation
(represented by symbol U) on relations DANCE and MUSIC.
The output of UNION operation is shown in Table 1.12.
Table 1.12 DANCE MUSIC
+-------+------+------+
|SNo | Name |Class |
+-------+------+------+
1	Aastha	7A
2	Mahira	6A
3	Mohit	7B
4	Sanjay	7A
1	Mehak	8A
3	Lavanya	7A
5	Abhay	8A
+-------+------+------+

1.4.2 INTERSECT (∩)
Intersect operation is used to get the common tuples
from two tables and is represented by the symbol ∩.
Figure 1.4 shows intersection of two sets.

Music Dance

Figure 1.4: Intersection of two sets

Suppose we have to display the list of students
who are participating in both the events (DANCE and
MUSIC), then intersection operation is to be applied on
these two tables. The output of INTERSECT operation is
shown in Table 1.13.
Table 1.13 DANCE ∩ MUSIC
+------+---------+-------+
| SNo | Name | Class |
+------+---------+-------+
| 2| Mahira | 6A |
| 4| Sanjay | 7A |
+------+---------+-------+

notes

Chapter 1.indd 17 11/26/2020 12:31:30 PM

Reprint 2025-26

InformatIcs PractIces18

1.4.3 MINUS (-)
This operation is used to get tuples/rows which are
in the first table but not in the second table, and the
operation is represented by the symbol - (minus). Figure
1.5 shows minus operation (also called set difference)
between two sets.

Music Dance

Figure 1.5: Difference of two sets

Suppose, we want the list of students who are only
participating in MUSIC and not in DANCE event. Then,
we will use the MINUS operation, whose output is given
in Table 1.14.
Table 1.14 DANCE - MUSIC
+------+---------+-------+
| SNo | Name | Class |
+------+---------+-------+
1	Mehak	8A
3	Lavanya	7A
5	Abhay	8A
+------+---------+-------+

1.4.4 Cartesian Product
Cartesian product operation combines tuples from two
relations. It results in all pairs of rows from the two input
relations, regardless of whether or not they have the
same values on common attributes. It is denoted as ‘X’.

The degree of the resulting relation is calculated
as the sum of the degrees of both the relations under
consideration. The cardinality of the resulting relation is
calculated as the product of the cardinality of relations
on which cartesian product is applied. Let us use
the relations DANCE and MUSIC to show the output
of cartesian product. Note that both relations are of
degree 3. The cardinality of relations DANCE and MUSIC
is 4 and 5 respectively. Applying cartesian product on
these two relations will result in a relation of degree 6
and cardinality 20, as shown in Table 1.15.

notes

Chapter 1.indd 18 11/26/2020 12:31:31 PM

Reprint 2025-26

Querying and SQL FunctionS 19

Table 1.15 DANCE X MUSIC
+------+--------+-------+------+---------+-------+
| SNo | Name | Class| SNo | Name | Class|
+------+--------+-------+------+---------+-------+
1	Aastha	7A	1	Mehak	8A
2	Mahira	6A	1	Mehak	8A
3	Mohit	7B	1	Mehak	8A
4	Sanjay	7A	1	Mehak	8A
1	Aastha	7A	2	Mahira	6A
2	Mahira	6A	2	Mahira	6A
3	Mohit	7B	2	Mahira	6A
4	Sanjay	7A	2	Mahira	6A
1	Aastha	7A	3	Lavanya	7A
2	Mahira	6A	3	Lavanya	7A
3	Mohit	7B	3	Lavanya	7A
4	Sanjay	7A	3	Lavanya	7A
1	Aastha	7A	4	Sanjay	7A
2	Mahira	6A	4	Sanjay	7A
3	Mohit	7B	4	Sanjay	7A
4	Sanjay	7A	4	Sanjay	7A
1	Aastha	7A	5	Abhay	8A
2	Mahira	6A	5	Abhay	8A
3	Mohit	7B	5	Abhay	8A
4	Sanjay	7A	5	Abhay	8A
+------+--------+-------+------+---------+-------+
20 rows in set (0.03 sec)

1.5 usinG two ReLations in a QueRY

Till now, we have written queries in SQL using a single
relation only. In this section, we will learn to write
queries using two relations.

1.5.1 Cartesian product on two tables
From the previous section, we learnt that application
of operator cartesian product on two tables results
in a table having all combinations of tuples from the
underlying tables. When more than one table is to be
used in a query, then we must specify the table names
by separating commas in the FROM clause, as shown in
Example 1.7. On execution of such a query, the DBMS
(MySql) will first apply cartesian product on specified
tables to have a single table. The following query of
Example 1.7 applies cartesian product on the two tables
DANCE and MUSIC:
Example 1.7
a) Display all possible combinations of tuples of

relations DANCE and MUSIC
mysql> SELECT * FROM DANCE, MUSIC;

 As we are using SELECT * in the query, the output will
be the Table 1.15 having degree 6 and cardinality 20.

notes

Chapter 1.indd 19 11/26/2020 12:31:31 PM

Reprint 2025-26

InformatIcs PractIces20

b) From the all possible combinations of tuples of
relations DANCE and MUSIC, display only those
rows such that the attribute name in both have the
same value.
mysql> SELECT * FROM DANCE D, MUSIC M WHERE D.Name
= M.Name;

Table 1.16 Tuples with same name
+------+--------+-------+------+--------+-------+
| Sno | Name | Class | Sno | Name | class |
+------+--------+-------+------+--------+-------+
| 2 | Mahira | 6A | 2 | Mahira | 6A |
| 4 | Sanjay | 7A | 4 | Sanjay | 7A |
+------+--------+-------+------+--------+-------+
2 rows in set (0.00 sec)

 Note that in this query we have used table aliases
(D for DANCE and M for MUSIC), just like column
aliases to refer to tables by shortened names. It is
important to note that table alias is valid only for
current query and the original table name cannot be
used in the query if its alias is given in FROM clause.

1.5.2 JOIN on two tables

JOIN operation combines tuples from two tables on
specified conditions. This is unlike cartesian product,
which make all possible combinations of tuples. While
using the JOIN clause of SQL, we specify conditions on
the related attributes of two tables within the FROM
clause. Usually, such an attribute is the primary key
in one table and foreign key in another table. Let us
create two tables UNIFORM (UCode, UName, UColor)
and COST (UCode, Size, Price) in the SchoolUniform
database. UCode is Primary Key in table UNIFORM.
UCode and Size is the Composite Key in table COST.
Therefore, Ucode is a common attribute between the
two tables which can be used to fetch the common data
from both the tables. Hence, we need to define Ucode as
foreign key in the Price table while creating this table.

Table 1.17 Uniform table
+-------+-------+--------+
| Ucode | Uname | Ucolor |
+-------+-------+--------+
1	Shirt	White
2	Pant	Grey
3	Tie	Blue
+-------+-------+--------+

notes

Chapter 1.indd 20 11/26/2020 12:31:31 PM

Reprint 2025-26

Querying and SQL FunctionS 21

Table 1.18 Cost table
+-----+------+-------+
|Ucode| Size | Price |
+-----+------+-------+
1	L	580
1	M	500
2	L	890
2	M	810
+-------+----+-------+

Example 1.7
List the UCode, UName, UColor, Size and Price of related
tuples of tables UNIFORM and COST.
The given query may be written in three different ways
as given below:
a) Using condition in where clause

mysql> SELECT * FROM UNIFORM U, COST C WHERE
U.UCode = C.UCode;

Table 1.19 Output of the query
+-------+-------+--------+-------+---------+-------+
| UCode | UName | UColor | Ucode | Size | Price |
+-------+-------+--------+-------+---------+-------+
1	Shirt	White	1	L	580
1	Shirt	White	1	M	500
2	Pant	Grey	2	L	890
2	Pant	Grey	2	M	810
+-------+-------+--------+-------+---------+-------+

4 rows in set (0.08 sec)

 As the attribute Ucode is in both tables, we need
to use table alias to remove ambiguity. Hence, we
have used qualifier with attribute UCode in SELECT
and FROM clauses to indicate its scope.

b) Explicit use of JOIN clause
mysql> SELECT * FROM UNIFORM U JOIN COST C ON
U.Ucode=C.Ucode;

 The output of the query is the same as shown
in Table 1.19. In this query, we have used JOIN
clause explicitly along with condition in FROM
clause. Hence, no condition needs to be given in
WHERE clause.

c) Explicit use of NATURAL JOIN clause
 The output of queries (a) and (b) shown in Table
1.19 has a repetitive column Ucode having exactly
the same values. This redundant column provides
no additional information. There is an extension
of JOIN operation called NATURAL JOIN which
works similar to JOIN clause in SQL, but removes
the redundant attribute. This operator can be used

notes

Chapter 1.indd 21 11/26/2020 12:31:31 PM

Reprint 2025-26

InformatIcs PractIces22

to join the contents of two tables iff there is one
common attribute in both the tables. The above
SQL query using NATURAL JOIN is shown below:
mysql> SELECT * FROM UNIFORM NATURAL JOIN COST;
+-------+-------+--------+------+-------+
| UCode | UName | UColor | Size | Price |
+-------+-------+--------+------+-------+
1	Shirt	White	L	580
1	Shirt	White	M	500
2	Pant	Grey	L	890
2	Pant	Grey	M	810
+-------+-------+--------+------+-------+
4 rows in set (0.17 sec)

 It is clear from the output that the result of this
query is same as that of queries written in (a) and (b),
except that the attribute Ucode appears only once.

Following are some of the points to be considered
while applying JOIN operations on two or more relations:

• If two tables are to be joined on equality condition
on the common attribute, then one may use JOIN
with ON clause or NATURAL JOIN in FROM clause.
If three tables are to be joined on equality condition,
then two JOIN or NATURAL JOIN are required.

• In general, N-1 joins are needed to combine N tables
on equality condition.

• With JOIN clause, we may use any relational
operators to combine tuples of two tables.

Summary

• A Function is used to perform a particular task
and return a value as a result.

• Single row functions work on a single row to
return a single value.

• Multiple row functions work on a set of records as
a whole and return a single value.

• Numeric functions perform operations on numeric
values and return numeric values.

• String functions perform operations on character
type values and return either character or numeric
values.

notes

Chapter 1.indd 22 11/26/2020 12:31:31 PM

Reprint 2025-26

Querying and SQL FunctionS 23

• Date and time functions allow us to deal with date
type data values.

• GROUP BY function is used to group the rows
together that contain similar values in a specified
column. Some of the group functions are COUNT,
MAX, MIN, AVG and SUM.

• Join is an operation which is used to combine
rows from two or more tables based on one or
more common fields between them.

1. Answer the following questions:
a) Define RDBMS. Name any two RDBMS software.
b) What is the purpose of the following clauses in a

select statement?
i) ORDER BY
ii) HAVING

c) Site any two differences between Single_row
functions and Aggregate functions.

d) What do you understand by Cartesian Product?
e) Write the name of the functions to perform the

following operations:
i) To display the day like “Monday”, “Tuesday”,

from the date when India got independence.
ii) To display the specified number of characters

from a particular position of the given string.
iii) To display the name of the month in which

you were born.
iv) To display your name in capital letters.

2. Write the output produced by the following SQL
commands:
a) SELECT POW(2,3);
b) SELECT ROUND(123.2345, 2),

ROUND(342.9234,-1);
c) SELECT LENGTH("Informatics Practices");
d) SELECT YEAR(“1979/11/26”),

MONTH(“1979/11/26”),
DAY(“1979/11/26”),

Exercise

notes

Chapter 1.indd 23 11/26/2020 12:31:31 PM

Reprint 2025-26

InformatIcs PractIces24

notes MONTHNAME(“1979/11/26”);
e) SELECT LEFT("INDIA",3), RIGHT("Computer

Science",4);
f) SELECT MID("Informatics",3,4),

SUBSTR("Practices",3);
3. Consider the following table named “Product”,

showing details of products being sold in a grocery
shop.

PCode PName UPrice Manufacturer
P01 Washing Powder 120 Surf

P02 Tooth Paste 54 Colgate

P03 Soap 25 Lux

P04 Tooth Paste 65 Pepsodant

P05 Soap 38 Dove

P06 Shampoo 245 Dove

a) Write SQL queries for the following:
i. Create the table Product with appropriate

data types and constraints.
ii. Identify the primary key in Product.
iii. List the Product Code, Product name and

price in descending order of their product
name. If PName is the same then display the
data in ascending order of price.

iv. Add a new column Discount to the table
Product.

v. Calculate the value of the discount in the
table Product as 10 per cent of the UPrice
for all those products where the UPrice is
more than 100, otherwise the discount will
be 0.

vi. Increase the price by 12 per cent for all the
products manufactured by Dove.

vii.Display the total number of products
manufactured by each manufacturer.

b) Write the output(s) produced by executing the
following queries on the basis of the information
given above in the table Product:
i. SELECT PName, Average(UPrice) FROM

Product GROUP BY Pname;
ii. SELECT DISTINCT Manufacturer FROM

Product;

Chapter 1.indd 24 11/26/2020 12:31:31 PM

Reprint 2025-26

Querying and SQL FunctionS 25

notesiii. SELECT COUNT(DISTINCT PName) FROM
Product;

iv. SELECT PName, MAX(UPrice), MIN(UPrice)
 FROM Product GROUP BY PName;

4. Using the CARSHOWROOM database given in the
chapter, write the SQL queries for the following:
a) Add a new column Discount in the INVENTORY

table.
b) Set appropriate discount values for all cars

keeping in mind the following:
(i) No discount is available on the LXI model.
(ii) VXI model gives a 10% discount.
(iii) A 12% discount is given on cars other than

 LXI model and VXI model.

c) Display the name of the costliest car with fuel
type “Petrol”.

d) Calculate the average discount and total discount
available on Car4.

e) List the total number of cars having no discount.
5. Consider the following tables Student and Stream in

the Streams_of_Students database. The primary key
of the Stream table is StCode (stream code) which is
the foreign key in the Student table. The primary key
of the Student table is AdmNo (admission number).

AdmNo Name StCode
 211 Jay NULL

 241 Aditya S03

 290 Diksha S01

 333 Jasqueen S02

 356 Vedika S01

 380 Ashpreet S03

StCode Stream

S01 Science

S02 Commerce

S03 Humanities

Write SQL queries for the following:

a) Create the database Streams_Of_Students.

Chapter 1.indd 25 11/26/2020 12:31:31 PM

Reprint 2025-26

InformatIcs PractIces26

b) Create the table Student by choosing appropriate
data types based on the data given in the table.

c) Identify the Primary keys from tables Student
and Stream. Also, identify the foreign key from
the table Stream.

d) Jay has now changed his stream to Humanities.
Write an appropriate SQL query to reflect this
change.

e) Display the names of students whose names end
with the character ‘a’. Also, arrange the students
in alphabetical order.

f) Display the names of students enrolled in Science
and Humanities stream, ordered by student name
in alphabetical order, then by admission number
in ascending order (for duplicating names).

g) List the number of students in each stream having
more than 1 student.

h) Display the names of students enrolled in
different streams, where students are arranged
in descending order of admission number.

i) Show the Cartesian product on the Student
and Stream table. Also mention the degree and
cardinality produced after applying the Cartesian
product.

j) Add a new column ‘TeacherIncharge” in the
Stream table. Insert appropriate data in each row.

k) List the names of teachers and students.
l) If Cartesian product is again applied on Student

and Stream tables, what will be the degree and
cardinality of this modified table?

notes

Chapter 1.indd 26 11/26/2020 12:31:31 PM

Reprint 2025-26

	leip1ps
	leip101
	leip102
	leip103
	leip104
	leip105
	leip106
	leip107

